摘要:RFID读写器(Radio Frequency IdenTIficaTIon的缩写)又称为“RFID阅读器”,即无线射频识别,通过射频识别信号自动识别目标对象并获取相关数据,无须人工干预,可识别高速运动物体并可同时识别多个RFID标签,操作快捷方便。RFID读写器有固定式的和手持式的,手持RFID读写器包含有低频,高频,超高频,有源等。RFID技术目前应用于很多行业,如物流、防伪溯源,工业制造,ETC等。特别是工业4.0的概念提出后,RFID读写器在制造业得到广泛的应用。
RFID读写器(Radio Frequency IdenTIficaTIon的缩写)又称为“RFID阅读器”,即无线射频识别,通过射频识别信号自动识别目标对象并获取相关数据,无须人工干预,可识别高速运动物体并可同时识别多个RFID标签,操作快捷方便。RFID读写器有固定式的和手持式的,手持RFID读写器包含有低频,高频,超高频,有源等。RFID技术目前应用于很多行业,如物流、防伪溯源,工业制造,ETC等。特别是工业4.0的概念提出后,RFID读写器在制造业得到广泛的应用。
RFID读写器在制造业使用中,配合电子标签在生产、运输以及仓库管理中日益突出。在生产环节代替条码刷枪,实现自动采集数据;物料拉动环节配合AGV小车运输;仓库环节管理货物进出、盘点等。高速公路电子收费系统ETC(Electronic Toll CollecTIon 缩写)中,读写器被定义成RSU(Road Side Unit),即路侧单元,读写车载单元OBU(On Board Unit)。RFID读写其应用于车场管理中,实现对车辆身份判别,自动扣费。如果采用远距离RFID读写器,则可以实现不停车、免取卡的快速通道,或者无人值守通道。
读写器即射频标签读写设备,是射频识别系统的两个重要组成部分(标签与读写器)之一。射频标签读写设备根据具体实现功能也有一些其他较为流行的别称,如:阅读器(Reader),查询器(Interrogator),通信器(Communicator),扫描器(Scanner),读写器(Reader and Writer),编程器(Programmer),读出装置(Reading Device),便携式读出器(Portable Readout Device),AEI设备( AutomaTIc Equipment Identification Device)等。 通常情况下,射频标签读写设备应根据射频标签的读写要求以及应用需求情况来设计。随着射频识别技术的发展,射频标签读写设备也形成了一些典型的系统实现模式,本章的重点也在于介绍这种读写器的实现原理。从最基本的原理角度出发,射频标签读写设备一般均遵循如图所示的基本模式。
无线射频识别技术(Radio Frequency Identification,简称:RFID)是一种非接触式的自动识别技术,其基本原理是利用射频信号和空间耦合(电感或电磁耦合)或雷达反射的传输特性,实现对被识别物体的自动识别。RFID读写器 (RFID阅读器)通过天线与RFID电子标签进行无线通信,可以实现对标签识别码和内存数据的读出或写入操作。典型的RFID读写器包含有RFID射频模块(发送器和接收器)、控制单元以及阅读器天线。射频识别系统中,电子标签又称为射频标签、应答器、数据载体;读写器又称为读出装置,扫描器、通讯器、读取器(取决于电子标签是否可以无线改写数据)。电子标签与阅读器之间通过耦合元件实现射频信号的空间(无接触)耦合、在耦合通道内,根据时序关系,实现的传递、数据的交换。
无线射频识别技术(Radio Frequency Identification,简称:RFID)是一种非接触式的自动识别技术,其基本原理是利用射频信号和空间耦合(电感或电磁耦合)或雷达反射的传输特性,实现对被识别物体的自动识别。
rfid读写器通过天线与RFID电子标签进行无线通信,可以实现对标签识别码和内存数据的读出或写入操作。典型的RFID读写器包含有RFID射频模块(发送器和接收器)、控制单元以及阅读器天线。
射频识别系统中,电子标签又称为射频标签、应答器、数据载体;读写器又称为读出装置,扫描器、通讯器、读取器(取决于电子标签是否可以无线改写数据)。电子标签与阅读器之间通过耦合元件实现射频信号的空间(无接触)耦合、在耦合通道内,根据时序关系,实现的传递、数据的交换。
rfid读写器通过天线与RFID电子标签进行无线通信,可以实现对标签识别码和内存数据的读出或写入操作。典型的阅读器包含有高频模块(发送器和接收器)、控制单元以及阅读器天线。
其中,电子标签又称为射频标签、应答器、数据载体;阅读器又称为读出装置,扫描器、通讯器、读写器(取决于电子标签是否可以无线改写数据)。电子标签与阅读器之间通过耦合元件实现射频信号的空间(无接触)耦合、在耦合通道内,根据时序关系,实现能量的传递、数据的交换。
(2)电磁反向散射耦合:雷达原理模型,发射出去的电磁波,碰到目标后反射,同时携带回目标信息,依据的是电磁波的空间传播规律。
第五、了解读距和防碰撞指标,读距指标要明确什么天线和标签下测试的;防碰撞要明确什么标签在什么排列方式下多长时间内全部读完;
第六、一个RFID应用系统除了和读写器有关外,还和标签、天线、被贴标物品材质、被贴标物品运动速度、周围环境等相关,在确定设备前最好能模拟现场情况进行测试和验证,确保产品真是能满足应用需求;
第八、看看开发资料是否符合系统开发需求,最好支持你所使用的系统,最好还有相关例程,如果不支持,到时候开发时间会很长,甚至开发不下去。
为业界提供实时、全面、高质量的RFID行业新闻、方案、案例与技术资讯与深度报道,打造全球权威的RFID产业中文信息门户!